

The Role of Network Packet Loss Modeling in Reliable Transport of Broadcast Audio

April 14, 2015 NAB Show 2015

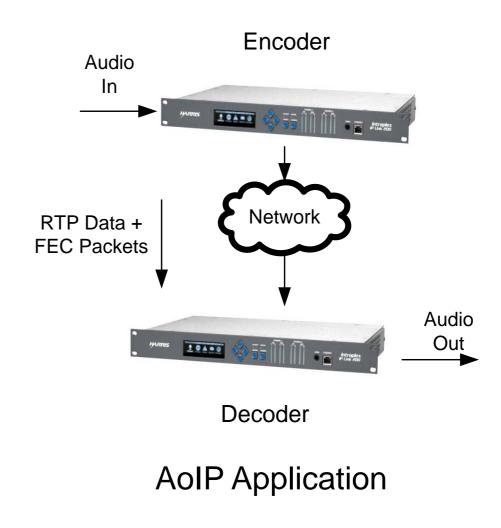
Featuring GatesAir's

Junius Kim Hardware Engineer

Keyur Parikh Architect / Software Lead

YOU IVE, breathe and eat this stuff

CONFERENCES: APRIL 11-16, 2015 • EXHIBITS: APRIL 13-16 LAS VEGAS CONVENTION CENTER • LAS VEGAS, NEVADA USA


The Role of Network Packet Loss Modeling in Reliable Transport of Broadcast Audio

Junius Kim and Keyur Parikh GatesAir Mason, OH

Overview

- Network Impairments
- Packet Loss Modeling
- Packet Loss Analysis
- Packet Loss Simulation
- Packet Loss Mitigation

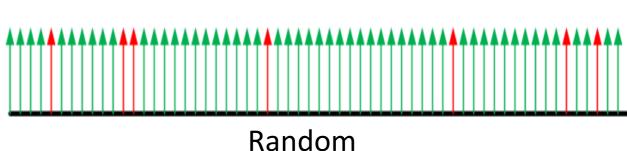
Network Impairments

- Jitter
- Out-of-Order Packets
- Duplicate Packets

Well defined solution for above impairments...

Packet Loss

More difficult problem to solve...

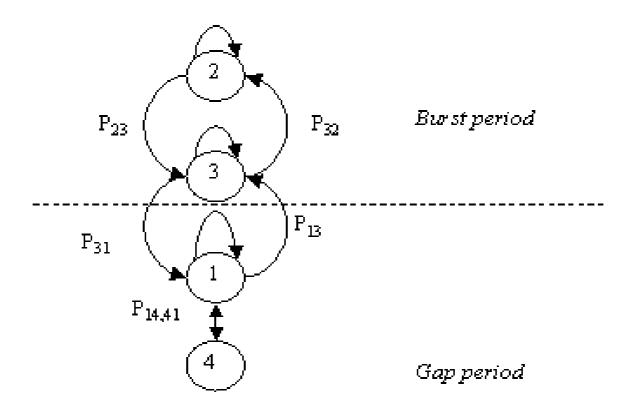

Packet Loss

- Causes of IP packet loss: route flapping, transmission errors, congestion
- Unmanaged vs. managed network services
- Packet loss concealment methods: energy interpolation, noise substitution, replaying previous frame
- Concealment works well at very low packet losses
- Need to use correction techniques along with concealment for higher level packet losses
- Correction techniques are based on standard RTP over UDP protocol

Packet Loss Patterns

- Random vs. Burst Packet Loss
- Random Losses
 - Uncorrelated
 - Appear to be spread out
- Burst Losses
 - Correlated

Burst + Random

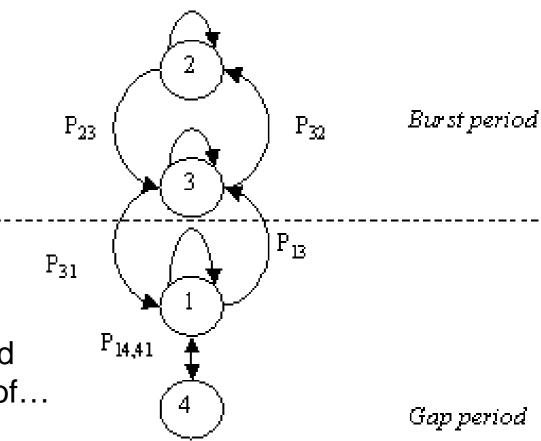


Four State Markov Model

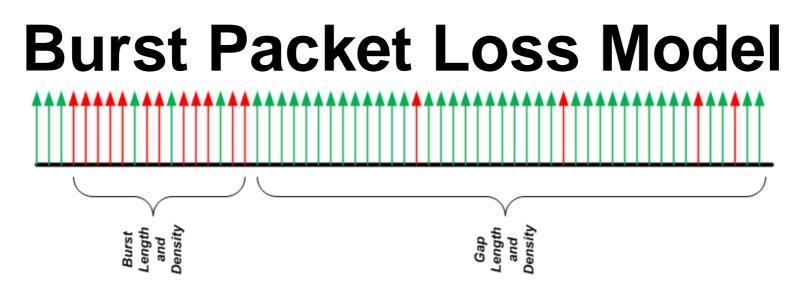
- Multi-state model
- Transition between states with a transition probability
- 4-state model represents burst periods, during which packets are received and lost according to a first 2-state model and gap periods during which packets are received and lost according to a second 2-state model

Packet Loss Model

Four-State Markov Model



Four-State Markov Model


State 1 - Packet is successfully receivedState 2 - Packet is received within a burstState 3 - Packet is lost within a burstState 4 - Isolated packet lost within a gap

where 1 represents a lost packet and 0 is a good received packet, correlates to the state pattern of...

111113322323232333111111111111

- Gap state: isolated or random losses
- Burst state: correlated packet losses in burst
- Density: probability of loss
- Period/Length: time within a state
- Gap Length and Gap Density
- Burst Length and Burst Density
- Objective of modeling is to characterize and fit "real world" network behavior

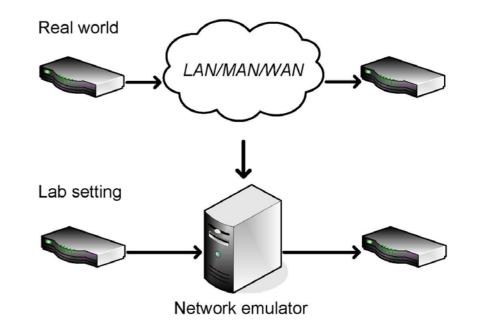

RFC 3611

- RFC 3611 defines an Extended Report (XR) packet type for the RTP Control Protocol (RTCP)
- RTP Control Protocol (RTCP) is a companion protocol of the Real-time Transport Protocol (RTP)
- XR supplements the reports in RTCP
- Intended for VoIP applications for monitoring of performance metrics

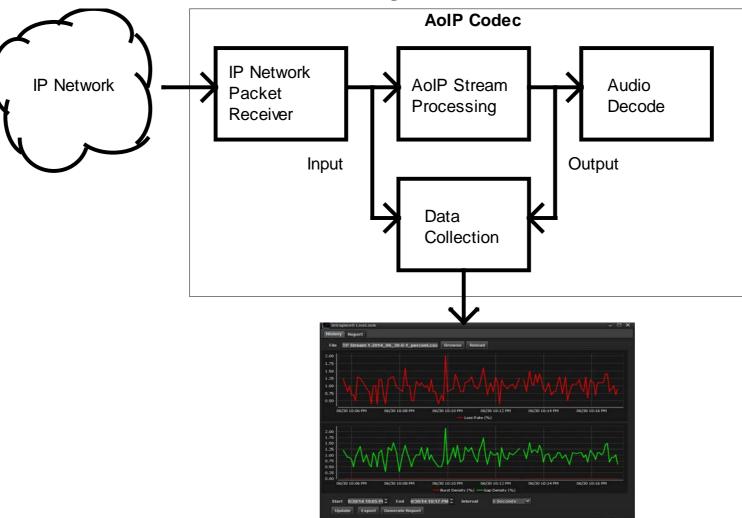
RTCP

- RTCP specifies report PDUs exchanged between sources and destinations of multimedia information
 - Receiver reception report
 - Sender report
- Reports contain statistics such as the number of RTP-PDUs sent, packet jitter, packet loss, round trip delay
- Used to provide feedback on QoS by periodically sending statistics

RFC 3611 Metrics


The VoIP Metrics payload is shown below:

Network Packet	Packets discarded	Density of lost/	Density of lost/				
Loss	due to jitter	discarded packets in	discarded packets in				
		burst periods	gap periods				
Average duration of b	ourst periods (mS)	Average duration of gap periods (mS)					
RTP Round Trip Delay	/ (mS)	End System Delay (mS)					
Signal Level (dBm)	Noise Level (dBm)	Residual Echo	Gmin - typically 16,				
		Return Loss (dB)	which classifies >5%				
			loss as burst				
R factor	External R factor	MOS LQ	MOS CQ				
PLC and Jitter Buffer	Reserved	Average jitter buffer delay (mS)					
Config							
Current max jitter bu	ffer delay (mS)	Max jitter buffer size (mS)					

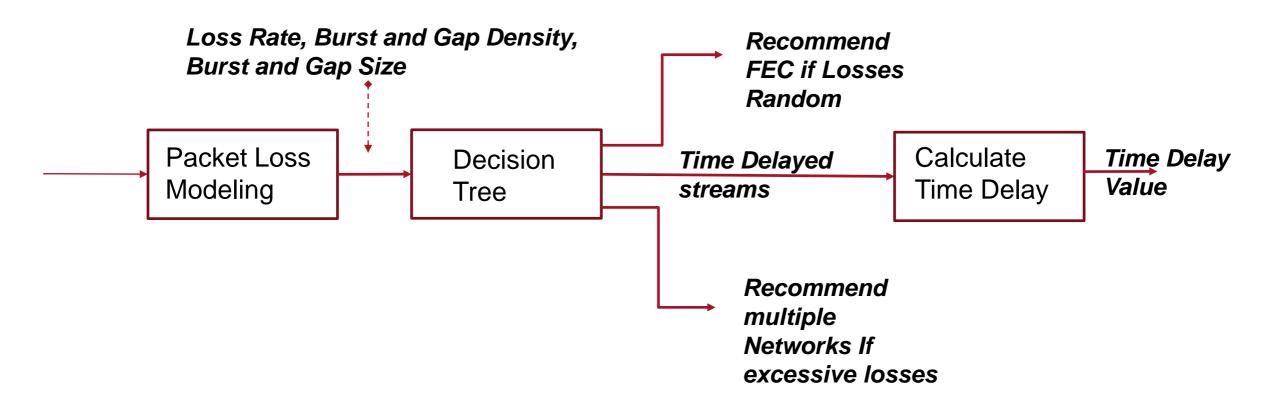

Packet Loss Simulation

- Linux module netem for network emulation
- Simulation of packet delay, drops, duplicates, corrupted packets, and lost packets
- Linux router
- Usage of netem for WAN emulation
- Evaluation of performance of AoIP in a lab environment

AoIP Analysis Tool

Network Analyzer

Random Packet Loss



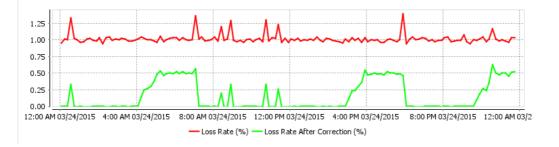
Burst Packet Loss

Network Analytics Flow

Report Generation

Stream Stats Summary

Loss Rate: 1.02 Loss Rate After Correction: 0.16 Packets Lost: 219101.00 Packets Lost(Group): 219101.00 Packets Recovered: 185049.00 Net Loss: 34052.00 Largest Loss Rate: 1.41


Network Packet Stats

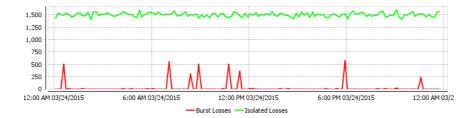
Isolated Losses: 215504.00 Burst Losses: 3599.00

Burst Stats

Max Burst: 793 Avg Burst: 139.12 Min Burst: 25 Avg Burst Density: 76.09

Loss Rate vs Loss Rate After Correction (600 second intervals)

Report Generation


Burst Stats

Max Burst: 793 Avg Burst: 139.12 Min Burst: 25 Avg Burst Density: 76.09

Loss Rate vs Loss Rate After Correction (600 second intervals)

Burst Losses vs Isolated Losses (600 second intervals)

Recommendations

Stream Splicing with Time Diversity of 500 ms is recommended for this Network

Time Diversity Required for .5%: 500 ms Time Diversity Required for .1%: 500 ms Time Diversity Required for .05%: 500 ms

Stream Selection

🃈 Intraplex® Liv	🔎 Intraplex® LiveLook 🗕 🗆 🗙									
Settings About										
Live View Hist	ory Report Connected Stre	eams								
			Refresh							
Stream Name	Last Message Time	Logging Path	Status							
RXAux	Thu 04:30:03 PM 03/26/2015	C:\Users\skona\Livelook\logs\192.168.3.200\RXAux-1-2015_03_26.csv	Down (RX Packet Loss)							
Streamonchan2	Thu 04:30:03 PM 03/26/2015	C:\Users\skona\Livelook\logs\192.168.3.201\Streamonchan2-4-2015	Down (RX Packet Loss) ا							
AAC HEs1	Thu 04:30:03 PM 03/26/2015	C:\Users\skona\Livelook\logs\192.168.3.200\AAC HEs1-5-2015_03_26	Up							
AAC HEs2	Thu 04:30:03 PM 03/26/2015	C:\Users\skona\Livelook\logs\172.16.96.50\AAC HEs2-6-2015_03_26.c	Up							
Uncompressed	Thu 04:30:03 PM 03/26/2015	C:\Users\skona\Livelook\logs\192.168.3.200\Uncompressed-7-2015_0	Up							
AAC HE	Thu 04:30:03 PM 03/26/2015	C:\Users\skona\Livelook\logs\172.16.96.50\AAC HE-8-2015_03_26.csv	Up							

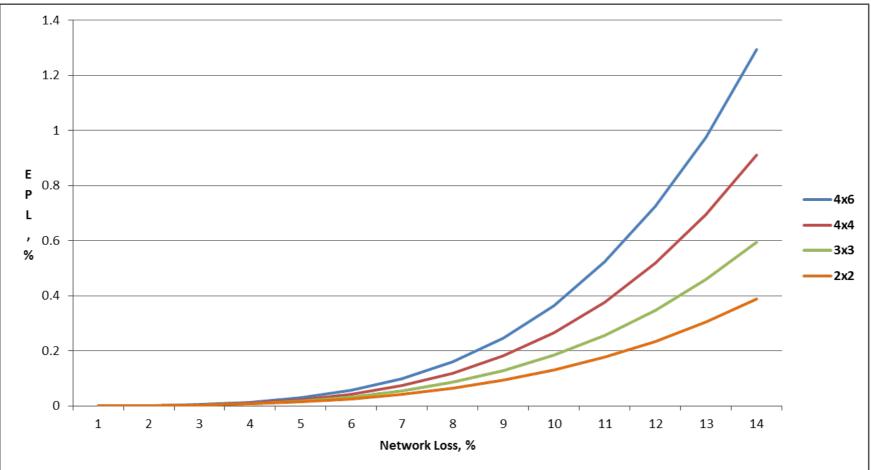
Mitigation of Packet Loss

- Mitigation methods
 - Forward Error Correction (FEC)
 - Interleaving
 - Redundant streaming
 - Network diversity
- Mitigation of random packet loss
- Mitigation of burst packet loss

RTP Forward Error Correction (FEC)

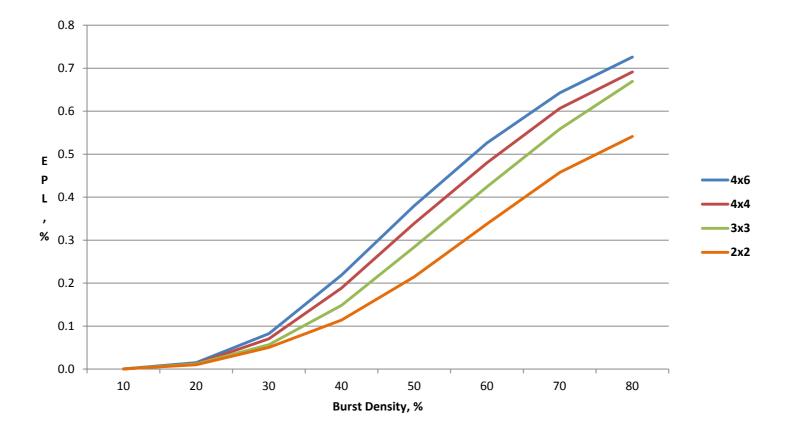
RTP Data + FEC packets

- FEC packets are generated from a matrix of RTP data packets
- Both data and FEC packets are sent to the receiver
- FEC attempts recovery of lost data packets at the receiver
- Unrecovered packets are considered lost and concealment is applied
- Effectiveness of recovery depends on the packet loss model



FEC Matrix

	Col 1	Col 2	Col 3	Col 4	FEC(x)
Row 1	1	2	3	4	XOR(1,2,3,4)
Row 2	5	6	7	8	XOR(5,6,7,8)
Row 3	9	10	11	12	XOR(9, 10,11,12)
Row 4	13	14	15	16	XOR(13, 14,15,16)
FEC(x)	XOR(1,5,9,13)	XOR(2,6, 10,14)	XOR(3,7, 11,15)	XOR(4,8, 12,16)	


FEC Correction Capability for Random Loss

FEC Correction vs. Burst Density

Average Packet Loss = 1%, Burst State Length= 16 packets

FEC Performance for 5% Random Loss

25% FEC 50% FEC No FEC Intraplex® LiveLook - 🗆 X Settings Router Configuration: Live View History Report 80 70 60 50 40 30 20 10 0 1:16 PM 1:16 PM 1:17 PM 1:17 PM 1:18 PM Mcasti Packets Lost — Mcasti Net Losses — Mcasti Packets Recovered Y Interval 5 Seconds Add Connection Disconnect Clear Data

5% Random Loss

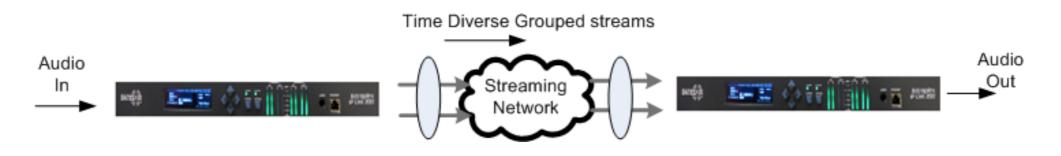
CRAVE NA/BSHOW Where Content Comes to Life MORE

Packet Interleaving

1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
-----	---	---	---	---	---	---	---	----	----	----	----	----	----	----

Packet sequence before interleaving

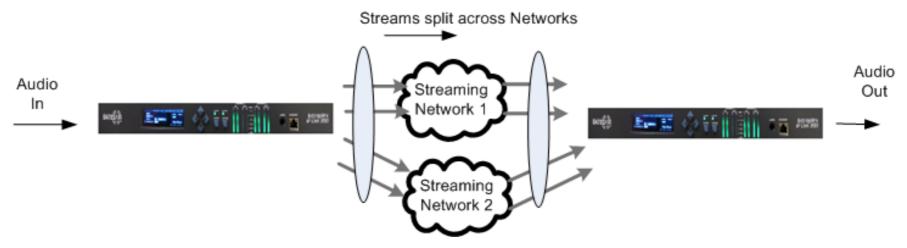
1	5	9	13
2	6	10	14
3	7	11	15
4	8	12	16


Interleaving matrix

1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16
8	25	18		Packa	teonia	anco at	fter int	torlog	ina	÷	S	8	20	20	20

Packet sequence after interleaving

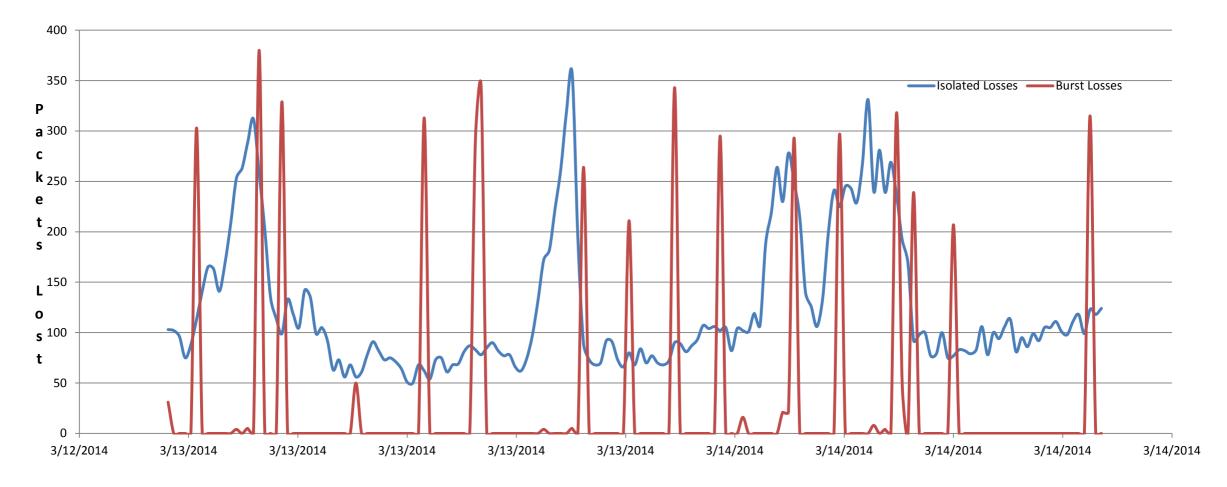
Redundant Streaming



- Two time diverse streams
- Time diversity value is set based on receiver's calculation of burst length

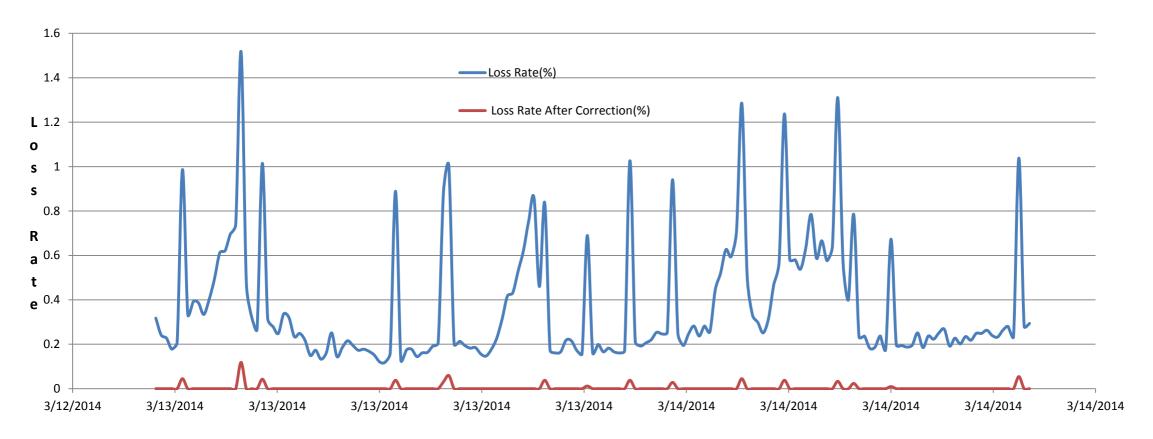
1% Avg PL, 80% Burst Density Network Loss Two Time Diverse streams: 400 msec. EPL 0.07

Network Diversity



- Streams of the group are split across multiple diverse networks
- Provides "hitless" protection against failure of any single network
- Provides higher level of packet loss protection due to uncorrelated network paths

Loss Distribution


Two systems connected via Time Warner at home and Verizon in the lab

AoIP Case Study

- Two streams with time diversity
 - Stream 1 time offset = 0, with 4x4 FEC
 - Stream 2 time offset = 1.25 secs

Summary

- Network impairments: jitter, duplicate, out-of-order, and lost packets
- Real world packet loss tends to occur in bursts
- Packet loss modelling can be used to characterize network behaviour
- Usage of an analytics tool to measure and characterize packet loss in an AoIP application
- Packet loss can be mitigated using FEC, interleaving, stream and network diversity
- Mitigation methods have bandwidth, delay, and network resources trade-offs
- An optimized mitigation strategy can be deployed based upon your network characteristics

Thank You

