

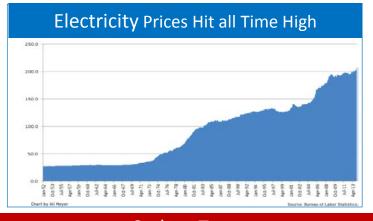
Total Cost of Ownership

Technologies for Optimized Transmitter Systems

April 12, 2015 NAB Show 2015

Featuring GatesAir's

Martyn Horspool
Product Manager,
TV Transmission


Issues Customers are Facing

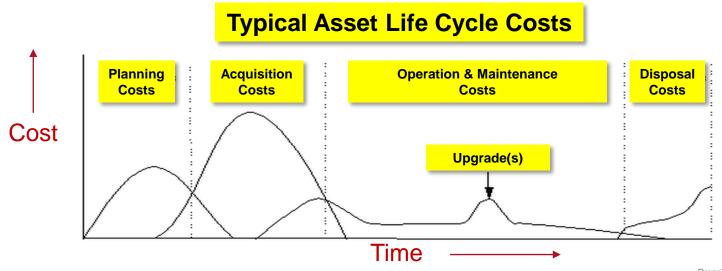
Rising Cost of Energy

- World electricity prices have increased by an average of 6.6% per year for the past 5 years
- Projected to continue to rise throughout the world - 60% increase by 2030

Carbon Taxes

Some countries are imposing taxes based on energy usage, example Australia from 2012-14:

Financial Year	Price* (USD \$)		
2012–13	23.00		
2014	24.15		
1 July 2014 onwards	Revoked		


Source: Clean Energy Regulator - per tonne of emitted CO₂

Total Cost of Ownership

Total Cost of Ownership - General Definition

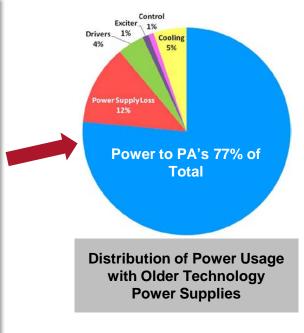
Total Cost of Ownership is the total cost of acquisition and operating costs over the asset life cycle. A TCO analysis can be used to gauge the viability of any capital investment

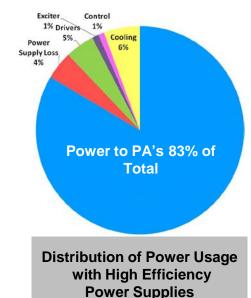
Factors Affecting TCO

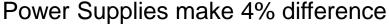
- When purchasing, or replacing a transmitter, Total Cost of Ownership is more important than
 just the purchase price alone
- Some of the items that must be considered:
 - Equipment acquisition cost (inc. taxes/duties/shipping, etc.)
 - Financing/Loan/Payment Terms (if applicable)
 - Building space requirements (own, lease, purchase)
 - Shipping to site, Installation and commissioning costs
 - Operational cost of the equipment, including:
 - AC power costs
 - Personnel training
 - Routine maintenance costs / site visits
 - Nepair costs
 - Upgrades
 - Warranty and other factors

TCO versus Efficiency

- TCO is what is really important to a transmission operator:
 - It's the total cost to own and operate the transmitter system over time
 - Includes initial equipment cost and delivery
 - Includes the installation/commissioning cost
 - Includes routine and unscheduled maintenance costs
 - Repair/replacement and other operational costs
- AC power consumed by the transmitter is important
 - However, other factors also affect the system efficiency:
 - AC transformers and voltage regulators
 - Heat load to the room (HVAC costs)
 - RF system losses (often significant)
 - RF feeder losses
 - > ex: Ch30, 2,000ft, 6-1/8" rigid line, energy loss = 38%
 - Non-optimal antenna pattern (throwing RF energy away)




Every Part of The Transmitter Matters



Effect of power supply efficiency on overall system efficiency

	Tx with older PS	Tx with new High Eff. PS
RF Power Output (kW)	5.0	5.0
Power Amplifier Efficiency	45%	45%
DC Power to PA's	11.11	11.11
Power Supply Efficiency	86%	96%
AC Power to PA's	12.92	11.57
Power Supply Loss	1.81	0.46
Drivers	0.6	0.6
Exciter	0.14	0.14
Control	0.12	0.12
Cooling	0.75	0.75
Total AC Input (kW)	14.53	13.18
Overall Tx Efficiency	34%	38%

Proprietary and confidential.

Technologies & TCO

- At GatesAir we are constantly updating designs to improve efficiency and lower TCO:
 - Higher Efficiency RF Devices & PA Module design
 - Higher Efficiency Power Supplies
 - Optimized Energy Efficient Cooling Systems
 - Broadband, future-proof designs
 - Improved up-time and reduced maintenance costs
 - Modular designs with Faster MTTR (Mean Time To Repair)
 - Higher Power Density for reduced floor space
 - User-friendly designs, easier to understand and operate

What is PowerSmart® ?

PowerSmart is the on-going GatesAir design initiative to create the most efficient transmitter designs and products. GatesAir leverages the most sophisticated tools to develop cost, energy, and space efficient solutions.

Television


Radio

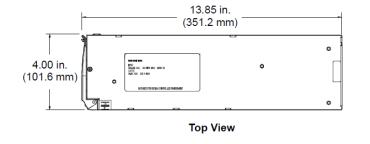
The Flexiva™ family of FM
transmitters set new
benchmarks with operating
efficiencies of up to 72%, the
first FM design to use 50V
LDMOS devices, and the
smallest footprint at 10kW and
higher power levels.

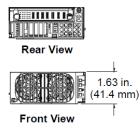
RF Device Technology

- New 50V LDMOS devices introduced that dramatically increase power density and efficiency
- Broadband high efficiency TV devices for VHF Band III and for UHF
- High Gain (> 15dB)
- Power 600W (CW) / 130 W TV average power
- Rugged
- Very High MTBF

BLF888D Features and benefits (from data sheet):

- High efficiency
- High power gain
- Excellent ruggedness (VSWR > 40 : 1 through all phases)
- Excellent thermal stability
- Integrated ESD protection
- One Doherty design covers the full bandwidth from 470 MHz to 860 MHz
- Internal input matching for ease of use


Power Supply Technology

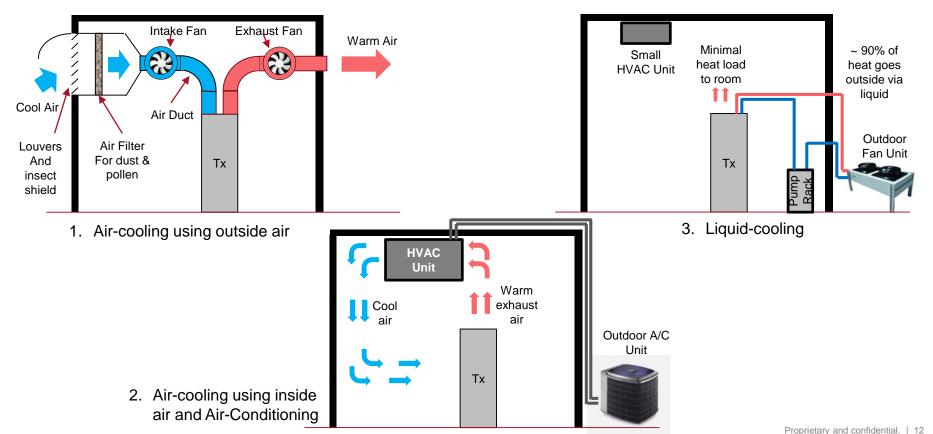


- Improvements in Power density/weight
- Very high conversion efficiency
 - 96.3% versus 84% only 6 years ago
- With 48-50V DC requirement, can leverage the Telecomm industry:
 - Very high MTBF (900,000hrs)
 - High volume part
 - Widely available Worldwide
- Versatile
 - Use same part in FM and TV products

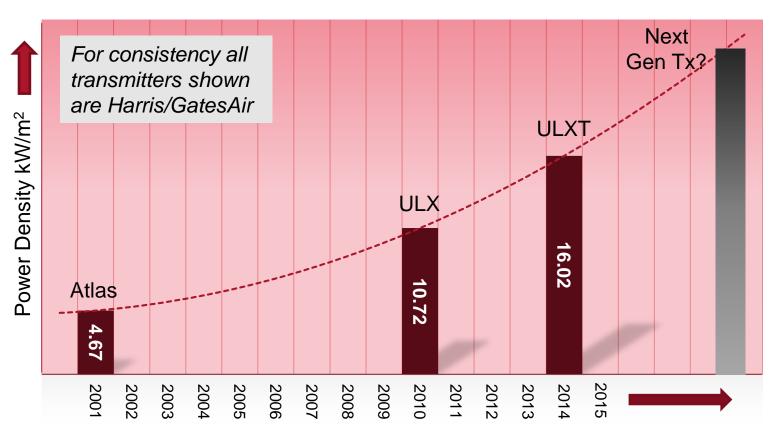
2,725 Watt high-efficiency power supply (weight 2kg)

Reliability (calculated)		900,000		Hours	At ambient of 25°C at full load per Telcordia SR-332, issue 2, Reliability Prediction for Electronic Equipment, Method I Case III.
--------------------------	--	---------	--	-------	--

Optimized Cooling Systems

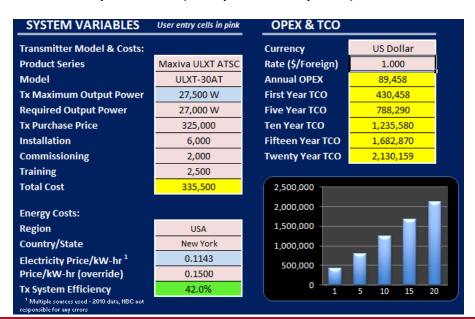

- Three common cooling methods for broadcast transmitters
 - 1. Air-cooled using outside air
 - 2. Air-cooled using inside air and Air-Conditioning
 - 3. Liquid cooling
- Each of these has some advantages and disadvantages

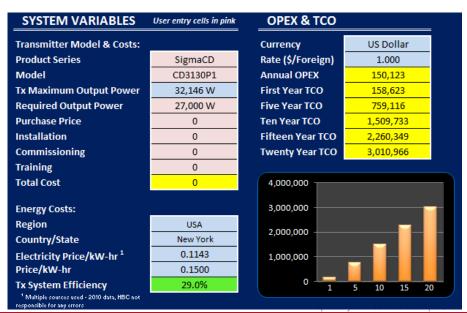
Three Ways to Cool the Transmitter


Cooling Comparison

ltem	Air-Cooled (outside air)	Air-Cooled (HVAC)	Liquid Cooled
Energy cost	Low	High	Low
Maintenance	Very High	Medium	Low
Installation cost	High	Medium	Medium/Low
Site visits	Frequent	Infrequent	Infrequent
Humidity control	None	Excellent	Excellent
Dust & dirt	Filter dependent	Excellent	Excellent
Reliability	Medium	Medium	Medium/Excellent
TCO Rank	3	2	1

Space Savings Trend (TV liquid-cooled Tx)




TCO Example: UHF-TV Replace IOT with New Tx

- New Transmitter
 - At 27.5kW ATSC
 - Power Cost 15.0 c/kW-hr
 - 10 year TCO (inc. purchase price) = \$1.24M



- Old Transmitter (IOT)
 - At 27.5kW ATSC
 - Power Cost 15.0 c/kW-hr
 - 10 year TCO = \$1.59M

TCO Example: UHF-TV Replace IOT with New Tx

Flexiva™ FLXT Liquid-Cooled FM Transmitters

NEW FLX Liquid Cooled FM Transmitter

- FLX10K
 - 12 kW Analog at 72% AC-RF Efficiency
 - 9.7 kW Analog, FM+HD @ -14dBc 60% AC-RF Efficiency
 - 7.7 kW Analog, FM+HD @-10dBc 55% AC-RF Efficiency
- Power Block Scalable 5kW 80kw

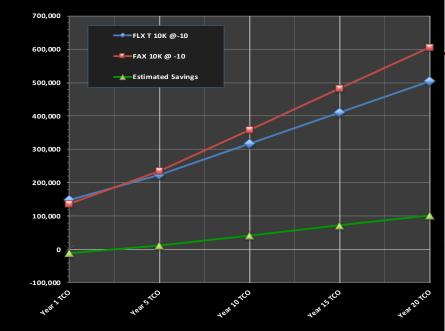
Available in Digital-Ready Analog Or Fully Digital

Flexiva™ FLXT Liquid-Cooled FM Transmitters

FLX10K 16RU Cabinet

- 12 kW average power
- 17kW peak power
- 7 50 Volt, 2.75 kW power supplies
 - 96% AC-DC Efficiency
- 14 New 970 Watt PA pallets
- 7 1940 Watt PA modules
 - 82% DC-RF PA efficiency
- Dual Exciter and IPA failover switching

Flexiva™ FLXT Liquid-Cooled FM Transmitters

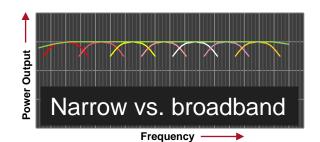

- 88% overall heat dissipation to liquid transfer efficiency
- Internal or external redundant pump modules
- Two 10kW transmitters with dual exciters, in a single rack
- 20kW with dual exciters in a single rack
- 40kW in four racks

= Lowest Total Cost of Ownership!

Transmitter TCO

Comparison (GatesAir / GatesAir) FLX T 10K @-10 FAX 10K@-10 **Estimated Savings Transmitter Models:** Flexiva FM HD FLXT **Product Series** Transmitter Model FLX T 10K @-10 FAX 10K @ -10 **Tx Maximum Output Power** 7,700 W 7,700 W 7.600 W 7.600 W **Required Output Power Purchase Price** 105,299 \$85,000.000 20.299 Installation 23.093 23.093 0 Commissioning 0 0 0 0 0 **Training** 20,299 **Total Cost** 128,392 108.093 **Energy Costs:** Region USA USA Country/State Florida Florida Price/kWh \$0.120 \$0.120 53.7% 51.3% Tx System Efficiency OPEX: FLX T 10K @-10 FAX 10K @ -10 **Estimated Savings Annual OPEX** 18,679 24,630 5.951 148,571 137,223 Year 1 TCO -11.348 Year 5 TCO 223,289 235,745 12,455 316,687 358,897 Year 10 TCO 42,210 Year 15 TCO 410,084 482,048 71.964 Year 20 TCO 503,482 605,200 101.718 **Breakeven Period** 3.0 Years Notes & assumptions: Operating output power must be less than or equal to the max. Tx power is pre-filter No real estate purchase or rental costs are included

Annual tx maintenance of \$2,400 (unless edited in cells V10, V11)


HVAC acqusition cost of \$1,150/ton, installation cost of \$2,500 (unless edited in cell V7)

Tx heat load to room is cooled by HVAC system. Default SEER = 12 (unless edited in cells V6, V10)

Summary – Things to Consider

- Broadband versus Banded TV Transmitter
 - Are you ready for Re-pack?
- Potential utility company rebates?
- Obsolescence and spare parts availability?
- High-voltage vs. Low-voltage (safety)
- Tx complexity and serviceability
- Modularity and On-air reliability
- Size, weight and ease of replacing modules
- Service & support from manufacturer

